skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Torres‐Rodriguez, J_Vladimir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Estimates of plant traits derived from hyperspectral reflectance data have the potential to efficiently substitute for traits, which are time or labor intensive to manually score. Typical workflows for estimating plant traits from hyperspectral reflectance data employ supervised classification models that can require substantial ground truth datasets for training. We explore the potential of an unsupervised approach, autoencoders, to extract meaningful traits from plant hyperspectral reflectance data using measurements of the reflectance of 2151 individual wavelengths of light from the leaves of maize (Zea mays) plants harvested from 1658 field plots in a replicated field trial. A subset of autoencoder‐derived variables exhibited significant repeatability, indicating that a substantial proportion of the total variance in these variables was explained by difference between maize genotypes, while other autoencoder variables appear to capture variation resulting from changes in leaf reflectance between different batches of data collection. Several of the repeatable latent variables were significantly correlated with other traits scored from the same maize field experiment, including one autoencoder‐derived latent variable (LV8) that predicted plant chlorophyll content modestly better than a supervised model trained on the same data. In at least one case, genome‐wide association study hits for variation in autoencoder‐derived variables were proximal to genes with known or plausible links to leaf phenotypes expected to alter hyperspectral reflectance. In aggregate, these results suggest that an unsupervised, autoencoder‐based approach can identify meaningful and genetically controlled variation in high‐dimensional, high‐throughput phenotyping data and link identified variables back to known plant traits of interest. 
    more » « less